Renewable Natural Gas via Catalytic Hydrothermal Gasification of Wet Biomass

November 2009
Biofuel With A Difference

- Most biofuel development today is focused on liquid fuels, especially ethanol and biodiesel
- Catalytic Hydrothermal Gasification (CHG) directly produces a gas—natural gas
- Process is simple and fast, and is the most efficient way to produce biofuel available today—lowest cost and least environmental impact per unit of energy produced
Overview of Gasification Process

- Catalytic Hydrothermal Gasification (CHG) is a wet process which produces renewable natural gas in a single step
- Reactions are fast and quite complete
- Catalyzed by ruthenium catalyst in fixed bed
- Process developed over 30-year period at Pacific Northwest National Laboratory, a DOE National Lab
- Genifuel has licensed process
Bench-Scale Gasifier
Overview of Gasification Process (cont.)

- Catalytic Hydrothermal Gasification (CHG) is not the same as thermal pyrolysis gasification
 - CHG produces Renewable Natural Gas (RNG)—a mixture of methane with small amounts of hydrogen and ethane
 - Thermal pyrolysis produces syngas—a mixture of carbon monoxide and hydrogen
 - CHG feedstock is processed wet, in the form of a slurry of 5% to 25% solids
CHG Chemistry

Partial equations:

\[\text{C}_6\text{H}_{10}\text{O}_5 + \text{H}_2\text{O} \rightarrow 6\text{CO} + 6\text{H}_2 \]
(steam reforming of carbohydrate)

\[\text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O} \]
(methanation)

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]
(water-gas shift)

The overall stoichiometry is then:

\[\text{C}_6\text{H}_{10}\text{O}_5 + \text{H}_2\text{O} \rightarrow 3\text{CH}_4 + 3\text{CO}_2 \]

Note: Feedstocks contain many molecular structures, including carbohydrates, proteins, etc. The actual gas products will usually contain a small amount of hydrogen and ethane as well as methane and carbon dioxide.
CHG Gasifier Is Simple and Economical

• Feedstock is heated and pumped to 350°C and 21MPa (app. 200 atm/3,000 psi)
 – Conditions are just below supercritical water
• Held briefly in filter tank to precipitate inorganics and liquefy feedstock, then passes through fixed catalyst bed
• Output flows through heat exchanger (to heat incoming feedstock) and water/gas separator
• Dwell time is only a few seconds
Characteristics of CHG Process

• Works with almost any organic material, as long as it can be made into a water slurry
• Converts >99% of organics with most feedstocks
• No tars or oils, very little ash
• Very efficient—almost all heat is recovered in heat exchanger to heat incoming feedstock
• Output is a directly usable medium-BTU fuel—62% natural gas and 38% CO₂ by volume
• Separate out CO₂ to get pipeline natural gas
Advantages of CHG Process

• CHG compared to anaerobic digestion (methane)
 – Higher yields—greater conversion of organics
 – Much less sludge left over (app. 1/5th as much)
 – Much, much faster
 – Physically smaller

• CHG compared to pyrolysis (syngas)
 – Lower temperatures
 – Handles high water content easily with no drying
 – Directly produces methane, with many uses
Feedstocks for CHG

• While any organic material can be used, aquatic biomass is ideal
 – Material is soft and wet, easy to make into slurry

• Other wet feedstocks are also good—e.g. wastewater solids

• Woody biomass is more difficult and expensive to prepare into slurry
 – High lignin content makes it harder to process
Typical Aquatic Feedstocks

• Freshwater algae--mixes of algae, cyanobacteria, diatoms
• Filamentous species are good—easy to harvest
• Algae “bottoms” left after oil extraction
• Other fast-growing aquatic species
• Marine algae
 – Ulva (filamentous)
 – Seaweeds (e.g. kelp)
Aquatic Feedstocks

• Algae is a good feedstock, but with entirely different approach than algae oil producers
 – The goal is highest biomass production at lowest possible cost
 – Do not need or want monocultures of oil producers, simplifying growth outdoors
 – Want indigenous types which are large, robust, fast-growing, and easy to harvest--filamentous species are perfect
Short Summary of Feedstocks

• Things which are generally considered weeds, nuisances, or problems

• Some reasons why:
 – Because they grow fast, are robust, and cosmopolitan (i.e. grow wherever conditions are right), or
 – Because they have to be disposed of (wastewater solids), or
 – Because they can generate a revenue side-stream
Cladophora glomerata:
A “Nuisance” Perfect for Gasification
Ulva in Large Quantities
Other Water/Marsh “Nuisances”
Duckweed—Easy to Harvest
10% Slurry of algae, cyanos, duckweed
Resource Recovery

- Heat is recovered to heat incoming feedstock
- CO$_2$ is separated from product gas leaving final gas very similar to natural gas
- CO$_2$ dissolved in the condensate is recycled to the growth ponds, accelerating growth of biomass and reducing local emissions
- Other nutrients (nitrogen, potassium, micronutrients, etc.) flow through in effluent water and are recycled to growth water, reducing both local emissions and fertilizer costs
Energy Cost for Renewable Natural Gas Compared to Biodiesel (Q4 2009)

<table>
<thead>
<tr>
<th></th>
<th>RNG</th>
<th>Algae B100</th>
<th>Soy B100</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST</td>
<td>$10/MCF</td>
<td>$30/gal</td>
<td>$3/gal</td>
</tr>
<tr>
<td>BTU Content</td>
<td>1,020,000</td>
<td>118,300</td>
<td>118,300</td>
</tr>
<tr>
<td>COST/100,000 BTU</td>
<td>.98</td>
<td>$25.36</td>
<td>$2.54</td>
</tr>
</tbody>
</table>
Status and Conclusion

- Now engineering 2,000 m³/d pilot plant for Q3 2010; demonstration unit of 8,000 m³/d next
- Initial use for CNG-powered vehicles in Asia and urban areas in US
- Can sell RNG into natural-gas pipelines to be used as chemical feedstock or in electricity generation to meet RPS
- Compared to other biofuels, RNG is the cheapest and cleanest biofuel available per unit of energy